Atomic-level simulations of seeman DNA nanostructures: the paranemic crossover in salt solution.
نویسندگان
چکیده
We use molecular dynamics (MD) simulations to understand the structure and stability of various paranemic crossover (PX) DNA molecules, synthesized recently by Seeman and co-workers at New York University. These studies include all atoms of the PX structures with an explicit description of solvent and ions. The average dynamics structures over the last 1 ns of the 3-ns simulation preserve the Watson-Crick hydrogen bonding as well as the helical structure. The root mean-square deviation in coordinates with respect to the MD averaged structure converges to 2-3 A for PX55, PX65, and PX85, but for PX75 and PX95 the root mean-square deviation in coordinates exhibits large fluctuations, indicating an intrinsic instability. The PX structures are structurally more rigid compared to the canonical B-DNA without crossover. We have developed a strain energy analysis method based on the nearest-neighbor interaction and computed the strain energy for the PX molecules compared to the B-DNA molecules of the same length and sequence. PX65 has the lowest calculated strain energy (approximately -0.77 kcal/mol/bp), and the strain increases dramatically for PX75, PX85, and PX95. PX55 has the highest strain energy (approximately 1.85 kcal/mol/bp) making it unstable, which is in accordance with the experimental results. We find that PX65 has helical twist and other helical structural parameters close to the values for normal B-DNA of similar length and sequence. Vibrational mode analysis shows that compared to other PX motifs, PX65 has the smallest population of the low-frequency modes that are dominant contributors for the conformational entropy of the PX DNA structures. All these results indicate that PX65 is structurally more stable compared to other PX motifs, in agreement with experiments. These results should aid in designing optimized DNA structures for use in nanoscale components and devices.
منابع مشابه
The stability of Seeman JX DNA topoisomers of paranemic crossover (PX) molecules as a function of crossover number.
We use molecular dynamics simulations in explicit water and salt (Na+) to determine the effect of varying the number of crossover points on the structure and stability of the PX65 paranemic crossover DNA molecule and its JXM topoisomers (M denotes the number of missing crossover points), recently synthesized by the Seeman group at New York University. We find that PX65, with six crossover point...
متن کاملUnderstanding DNA based nanostructures.
We use molecular dynamics (MD) simulations to understand the structure, and stability of various Paranemic crossover (PX) DNA molecules and their topoisomer JX molecules, synthesized recently by Seeman and coworkers at New York University (NYU). Our studies include all atoms (4432 to 6215) of the PX structures with an explicit description of solvent and ions (for a total of up to 42,000 atoms) ...
متن کاملIn vivo cloning of artificial DNA nanostructures.
Mimicking nature is both a key goal and a difficult challenge for the scientific enterprise. DNA, well known as the genetic-information carrier in nature, can be replicated efficiently in living cells. Today, despite the dramatic evolution of DNA nanotechnology, a versatile method that replicates artificial DNA nanostructures with complex secondary structures remains an appealing target. Previo...
متن کاملThermodynamics of forming a parallel DNA crossover.
The process of genetic recombination involves the formation of branched four-stranded DNA structures known as Holliday junctions. The Holliday junction is known to have an antiparallel orientation of its helices, i.e., the crossover occurs between strands of opposite polarity. Some intermediates in this process are known to involve two crossover sites, and these may involve crossovers between s...
متن کاملSpecific RNA self-assembly with minimal paranemic motifs.
The paranemic crossover (PX) is a motif for assembling two nucleic acid molecules using Watson-Crick (WC) basepairing without unfolding preformed secondary structure in the individual molecules. Once formed, the paranemic assembly motif comprises adjacent parallel double helices that crossover at every possible point over the length of the motif. The interaction is reversible as it does not req...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 90 5 شماره
صفحات -
تاریخ انتشار 2006